Bounding Solutions of Pfaff Equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounding the Degree of Solutions to Pfaff Equations

We study hypersurfaces of complex projective manifolds which are invariant by a foliation, or more generally which are solutions to a Pfaff equation. We bound their degree using classical results on logarithmic forms.

متن کامل

A constructive proof of the Density of Algebraic Pfaff Equations without Algebraic Solutions

— We present a constructive proof of the fact that the set of algebraic Pfaff equations without algebraic solutions over the complex projective plane is dense in the set of all algebraic Pfaff equations of a given degree. Résumé. — Nous présentons une preuve constructive du fait que l’ensemble des équations de Pfaff sans solutions algébriques sur le plan projectif complexe est dense dans l’ense...

متن کامل

Rational solutions to the Pfaff lattice and Jack polynomials

The finite Pfaff lattice is given by commuting Lax pairs involving a finite matrix L (zero above the first subdiagonal) and a projection onto Sp(N). The lattice admits solutions such that the entries of the matrix L are rational in the time parameters t1, t2, . . . , after conjugation by a diagonal matrix. The sequence of polynomial τ -functions, solving the problem, belongs to an intriguing ch...

متن کامل

An Iterative Technique for Bounding Derivatives of Solutions of Stein Equations

We introduce a simple iterative technique for bounding derivatives of solutions of Stein equations Lf = h−Eh(Z), where L is a linear differential operator and Z is the limit random variable. Given bounds on just the solutions or certain lower order derivatives of the solution, the technique allows one to deduce bounds for derivatives of any order, in terms of supremum norms of derivatives of th...

متن کامل

Parallel LLL-reduction for bounding the integral solutions of elliptic Diophantine equations

Stroeker and Tzanakis gave convincing numerical and heuristic evidence for the fact that in their Ellog method a certain parameter λ plays a decisive role in the size of the final bound for the integral points on elliptic curves. Furthermore, they provided an algorithm to determine the MordellWeil basis of the curve which corresponds to the optimal choice of λ. In this paper we show that workin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2003

ISSN: 0092-7872,1532-4125

DOI: 10.1081/agb-120022442